"Amines 101" for Metalworking Fluids

Houston Section STLE November 6, 2013

Dow Consumer & Industrial Solutions Patrick Brutto, M.Sc., CMFS Technical Services & Development

- Application areas
- Neutralizers vs. pH adjusters vs. pH buffers
- Typical acids (good & bad)
- Neutralizer characteristics & choices
- pH adjuster characteristics & choices
- pH buffer characteristics & choices
- Secondary benefits
- Health, safety & regulatory factors

Primary Application Areas

- Water-dilutable metalworking fluids
 - Metal removal (drilling, tapping, grinding, etc.)
 - Metal forming (drawing, rolling, stamping, etc.)

- Application areas
- Neutralizers vs. pH adjusters vs. pH buffers
- Typical acids (good & bad)
- Neutralizer characteristics & choices
- pH adjuster characteristics & choices
- pH buffer characteristics & choices
- Secondary benefits
- Health, safety & regulatory factors

Neutralizers vs. pH Adjusters vs. pH Buffers

- Neutralizers
 - Typically used in initial formulation (concentrate) to form salts of acid-functional components (organic & inorganic acids)
- pH Adjusters
 - Commonly added to virgin fluids to form stable concentrate/dilution & adjust alkaline pH
 - Sometimes added "tank-side" in MWF systems to restore starting pH of fluid

Neutralizers vs. pH Adjusters vs. pH Buffers

- pH Buffers
 - Added to concentrates to neutralize "bad acids" formed during use of fluid and to prevent pH drop (i.e. provide reserve alkalinity)
 - Sometimes added tank-side to renew buffering capacity of fluid

- Application areas
- Neutralizers vs. pH adjusters vs. pH buffers
- **Typical acids** (good & bad)
- Neutralizer characteristics & choices
- pH adjuster characteristics & choices
- pH buffer characteristics & choices
- Secondary benefits
- Health, safety & regulatory factors

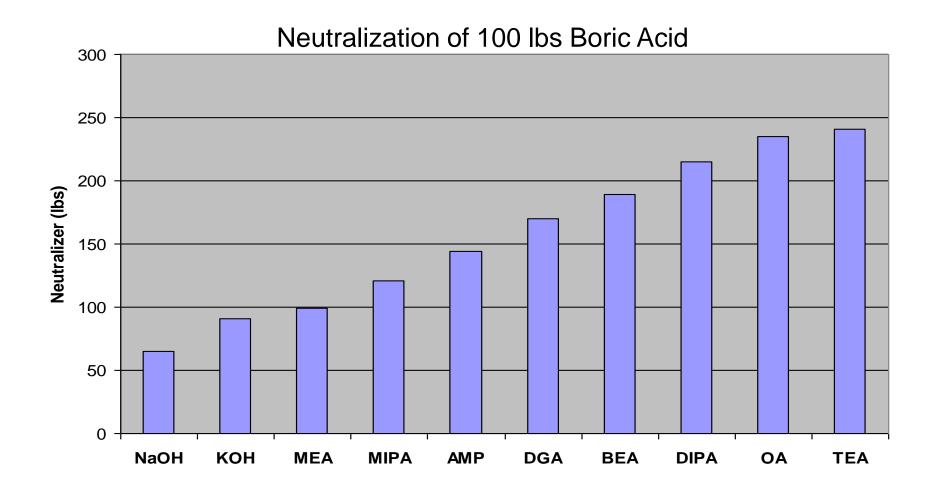
Typical Acids

- Functional acids (good)
 - Organic acids such as oleic, tall oil, nonanoic, decanedioic and many others provide: corrosion control, emulsification, lubrication
 - Inorganics such as boric acid & phosphate esters impart: corrosion control, biostatic effects, lubrication
- Acid contaminants (bad)
 - By-products of microbial growth (short-chain organic acids)
 - Carbonic acid from dissolved carbon dioxide
 - Oxidative degradation products (mostly organic acids)
 - External contaminants (acid-based cleaners, etc.)

- Application areas
- Neutralizers vs. pH adjusters vs. pH buffers
- Typical acids (good & bad)
- Neutralizer characteristics & choices
- pH adjuster characteristics & choices
- pH buffer characteristics & choices
- Secondary benefits
- Health, safety & regulatory factors

The Ideal Neutralizer

- Low Molecular Wt.
 - Less is needed to neutralize a given amount of acid
- High Base Strength (pKa)
 - pKa is the pH where ½ the base is neutralized
 - At higher pHs less is neutralized, at lower pHs more is
 - Reaction of highest pKa neutralizer dominates
- Favorable Salt Characteristics
 - A "salt" is the neutralization product of an acid & base (ionic bond)
 - Neutralizers can influence the performance of the corresponding salts
 - Corrosion control
 - Emulsification
 - Solubility
 - Microbial resistance
 - Lubrication


Typical Neutralizers

Neutralizer	Molecular Wt.	рКа	Other Relevant Characteristics	
Sodium Hydroxide	40	13.8	Most efficient overall, lower performing salts (vs. amines), handling hazards	
Potassium Hydroxide	56	13.5	Lower performing salts (vs. amines), handling hazards	
Monoethanolamine (MEA)	61	9.5	Most efficient amine, microbially degradable (forms ammonia), leaches cobalt, aggressive on Al alloys	
Monoisopropanolamine (MIPA)	75	9.6	Slightly better microbial resistance (doesn't release ammonia), leaches cobalt	
Aminomethylpropanol (AMP)	89	9.7	Good microbial resistance (doesn't release ammonia), leaches less cobalt	
Diglycolamine (DGA)	105	10.0	Microbially degraded (fungi), leaches less cobalt	
Butylethanolamine (BEA)	117	10.0	Enhances biocide performance, secondary amine	
Diisopropanolamine (DIPA)	133	9.0	Some microbial resistance, secondary amine	
Octanolamine (OA)	145	9.8	Significantly enhances biocide performance, maintains good ferrous corrosion control	
Triethanolamine (TEA)	149	7.8	Least efficient; microbially degradable (forms ammonia), leaches cobalt	

Neutralizer: Molecular Wt. Impact

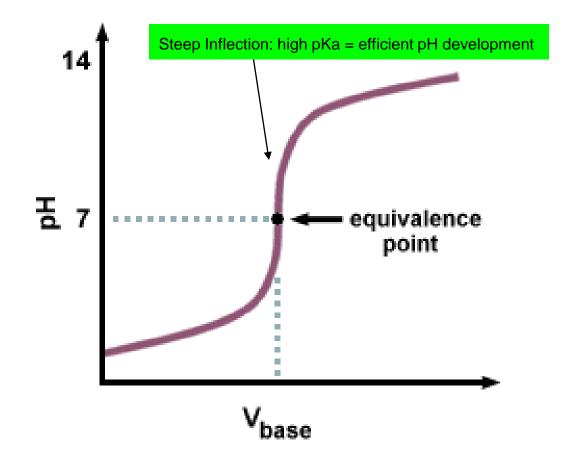
- Application areas
- Neutralizers vs. pH adjusters vs. pH buffers
- Typical acids (good & bad)
- Neutralizer characteristics & choices
- pH adjuster characteristics & choices
- pH buffer characteristics & choices
- Secondary benefits
- Health, safety & regulatory factors

The Ideal pH Adjuster

- High pKa
 - High base strength equals efficient pH development
- Minimally reactive with atmospheric CO₂

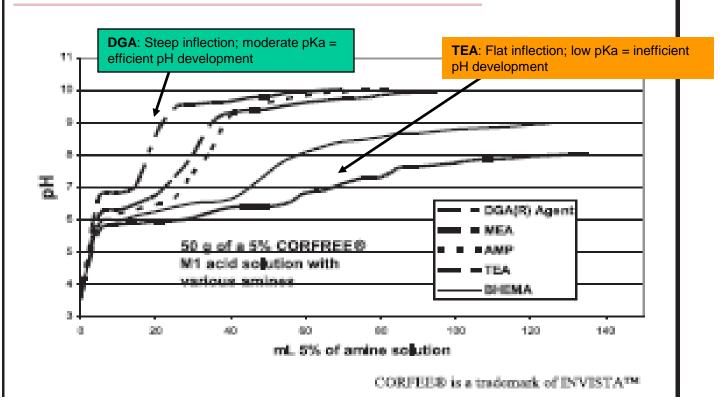
Typical pH Adjusters

pH Adjuster	рКа	Molecular Wt.	Other Relevant Characteristics	
NaOH	13.8	40	Most efficient overall, highly reactive with atmospheric CO ₂	
КОН	13.5	56	Highly reactive with CO ₂	
DGA	10.0	105	Most efficient amine (tied), moderately reactive with CO ₂	
BEA	10.0	117	Most efficient amine (tied), not tested for CO ₂ reactivity	
OA	9.8	145	Not tested for CO ₂ reactivity	
AMP	9.7	89	Less reactivity with CO ₂	
MIPA	9.6	75	Moderately reactive with CO ₂	
MEA	9.5	61	Moderately reactive with CO ₂	
DIPA	9.0	133	Not tested for CO ₂ reactivity	
TEA	7.8	149	Least efficient, not tested for CO ₂ reactivity	


pH Adjuster: Base Strength Impact

- KOH & NaOH
 - Strong bases
- Amines
 - Moderate to weak bases

NaOH or KOH Titration Curve



Amine Titration Curves

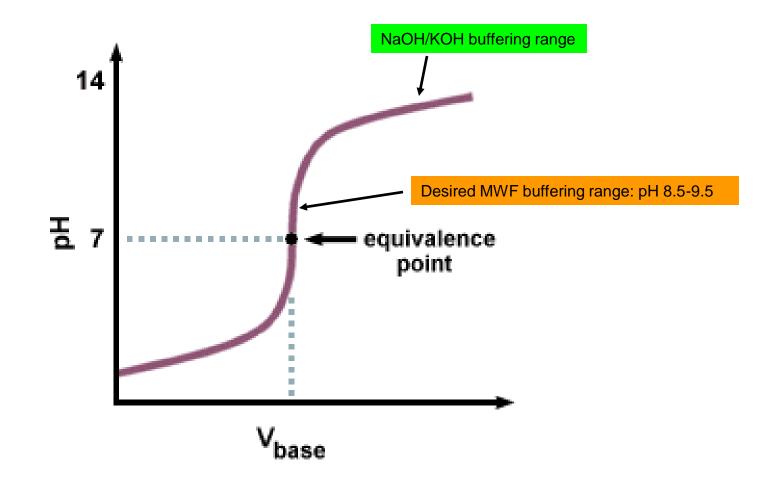
Figure 5

Comparison of various metaworking amines used to neutralize INVISTA™ CORFREE ® M1

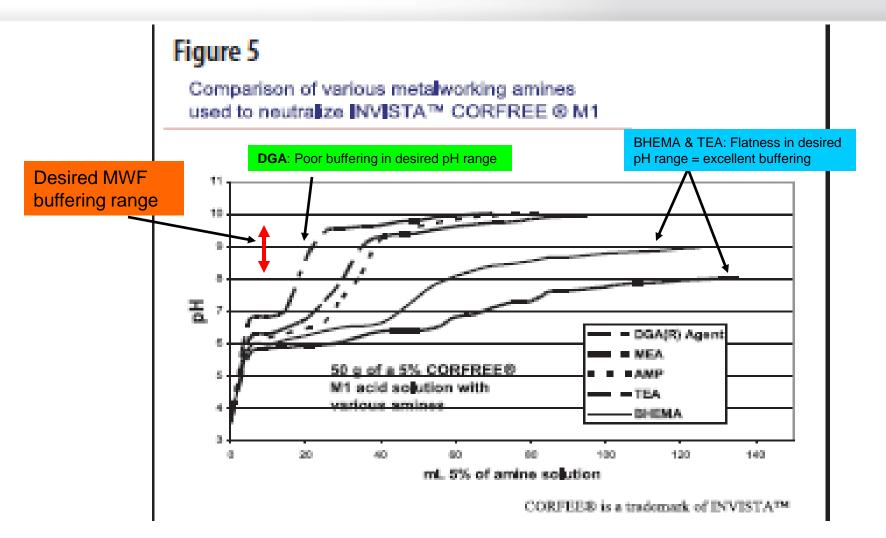
- Application areas
- Neutralizers vs. pH adjusters vs. pH buffers
- Typical acids (good & bad)
- Neutralizer characteristics & choices
- pH adjuster characteristics & choices
- pH buffer characteristics & choices
- Secondary benefits
- Health, safety & regulatory factors

The Ideal pH Buffer

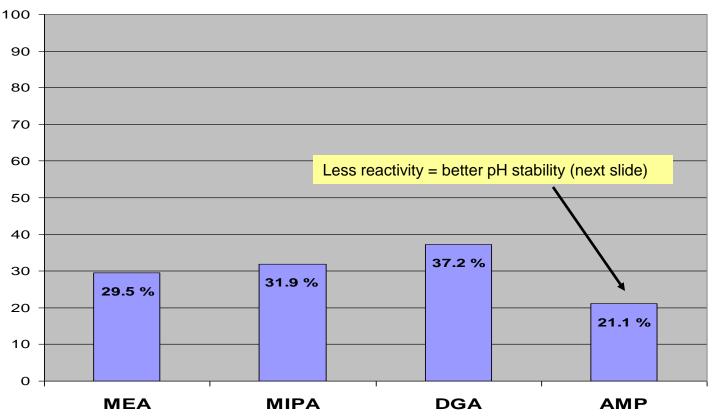
- Flat pH response in desired pH range
 - Flat titration curve
- Low molecular weight
- Low reactivity with CO₂
- Good microbial resistance


Typical pH Buffers

pH Buffer	Low pKa = flatness in MWF pH range 8.5-9.5	Molecular Wt. Other Relevant Characteristics		
TEA	7.8	149	Flatest titration curve = best buffer, highest molecular wt., highly degraded by microorganisms	
DIPA	9.0	133	Some microbial resistance, not tested for CO ₂ reactivity	
MEA	9.5	61	Readily degraded by microorganisms, reactive with CO ₂	
MIPA	9.6	75	Some microbial resistance, reactive with CO ₂	
AMP	9.7	89	Good microbial resistance, less reactive with CO ₂	
OA	9.8	145	Excellent enhancement of biocide performance, not tested for CO ₂ reactivity	
DGA	10.0	105	Microbially degraded (fungi), reactive with CO ₂	
BEA	10.0	117	Very good microbial resistance, not tested for CO ₂ reactivity	
КОН	13.5	56	Steepest titration curve = worst buffer , highly reactive with CO_2	
NaOH	13.8	40	Steepest titration curve = worst buffer , highly reactive with CO ₂	

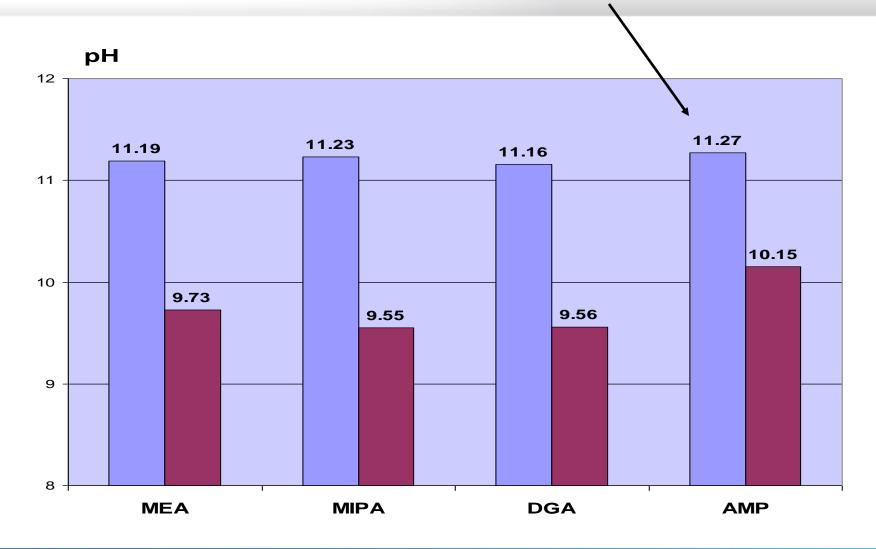

NaOH & KOH = High pKa = Poor Buffers

Amines = Low/Med. pKa = Better Buffers



Reactivity with Atmospheric CO₂

% of Initial Amine Lost to Carbonate Formation

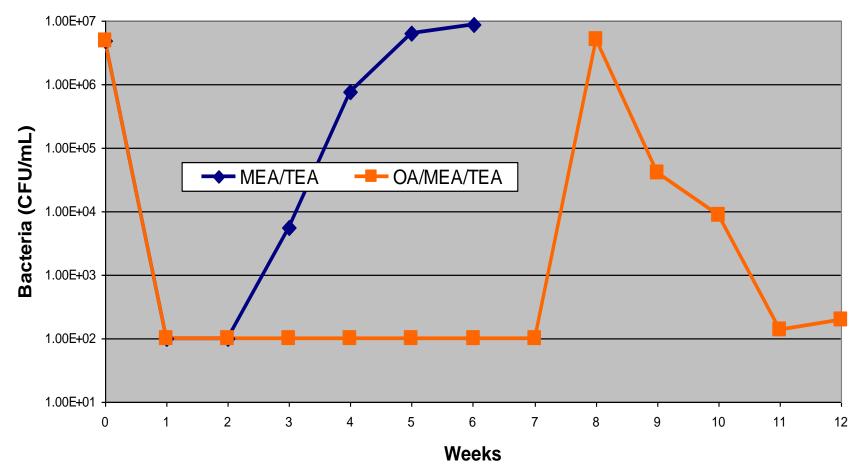

(Recirculated amine solution in open aquarium - 2 weeks at 38°C)

Lower CO₂ Reactivity = Better pH Stability

- Application areas
- Neutralizers vs. pH adjusters vs. pH buffers
- Typical acids (good & bad)
- Neutralizer characteristics & choices
- pH adjuster characteristics & choices
- pH buffer characteristics & choices
- Secondary benefits
- Health, safety & regulatory factors

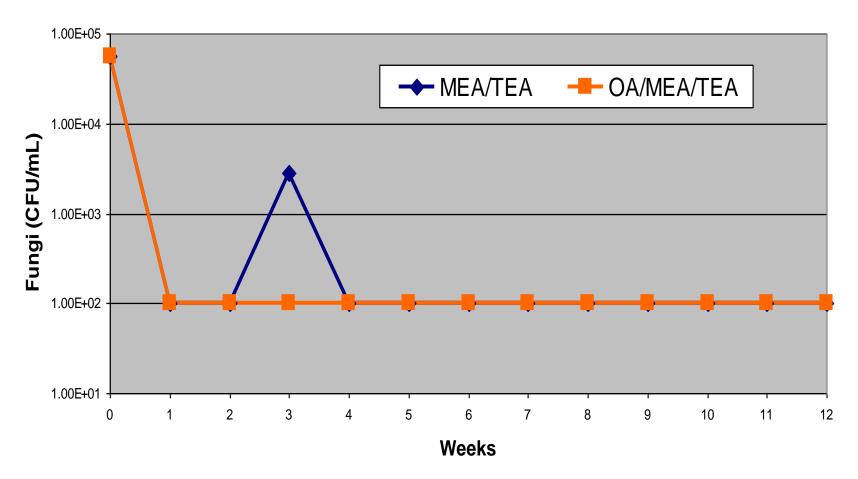
Secondary Benefits

- Some amines significantly enhance the performance of registered biocides
 - Better control of bacteria & fungi
 - Better pH stability even with lower reserve alkalinity
 - Better maintenance of iron/steel corrosion control
 - Less aggressive on aluminum alloys
- Example
 - Partial replacement of TEA with much lower levels of OA


Synthetic MWF Formulation

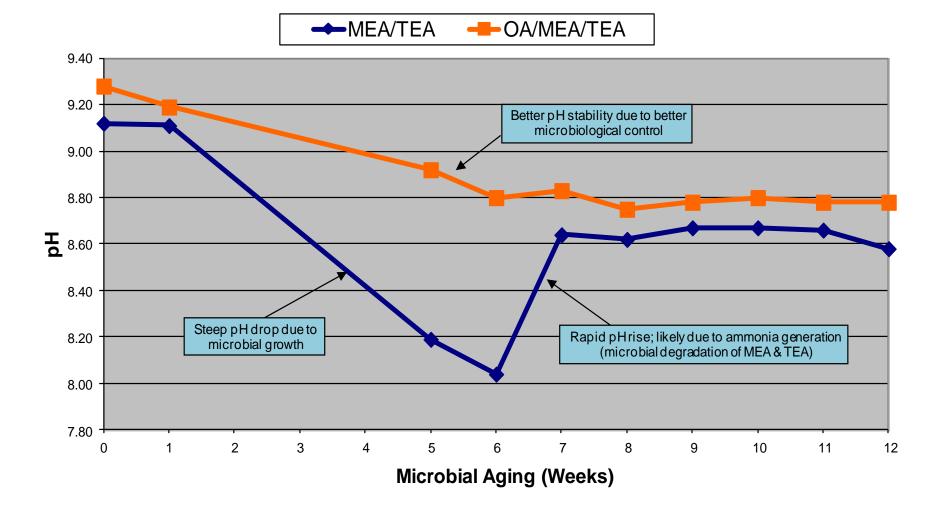
Ingredient	MEA/TEA	OA/MEA/TEA
Dicarboxylic Acid	3%	3%
Inversely Soluble Ester	8	8
Phosphate Ester	3	3
OA		4
TEA	15	4
MEA	5	5
Triazine	2	2
Deionized Water	64	71
Total	100	100
Total Alkalinity (moles amine/100 lbs fluid)	83	60

Bacterial Control*

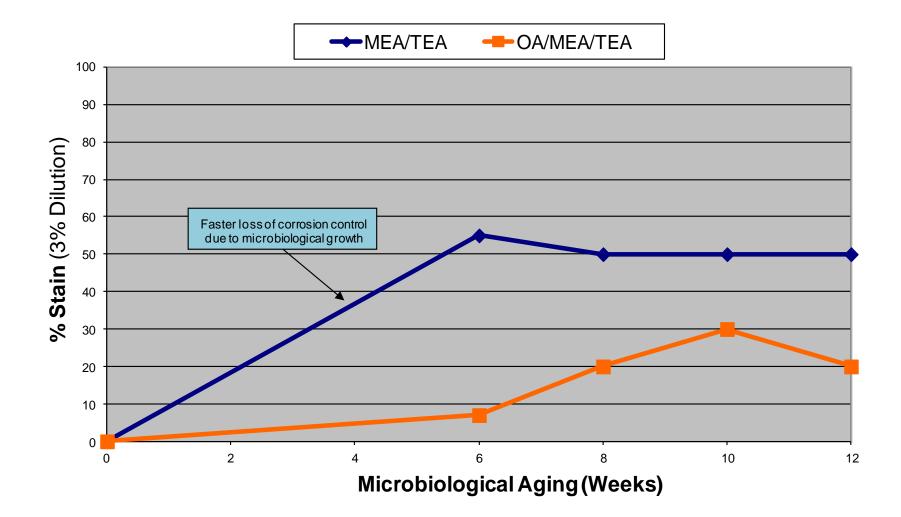


* Weekly inoculation 10E6 CFU/mL bacteria, 10E4 CFU/mL fungi

Fungal Control*



* Weekly inoculation 10E6 CFU/mL bacteria, 10E4 CFU/mL fungi



Corrosion Control

Secondary Benefits: Conclusions

- Good microbial control is critical
- Controlling microbes prevents formation of "bad acids"; a high level of reserve alkalinity isn't needed
- TEA is an ideal pH buffer for MWFs but is susceptible to biological attack; buffering ability is rapidly lost
- Ammonia generation due to biodegradation of ethanolamines can fool operators into thinking pH is under control

- Application areas
- Neutralizers vs. pH adjusters vs. pH buffers
- Typical acids (good & bad)
- Neutralizer characteristics & choices
- pH adjuster characteristics & choices
- pH buffer characteristics & choices
- Secondary benefits
- Health, safety & regulatory factors

Health, Safety & Regulatory Factors

- Strong bases are hazardous to handle (KOH, NaOH)
- Secondary amines (DEA, DIPA, BEA) are regulated in Germany (TRGS 611) due to possible formation of nitrosamines
- Ammonia formed by biodegradation of certain amines can result in sudden release during tank-side pH adjustment
- Some amines (TEA, others) can leach high levels of cobalt during carbide tool production; possible adverse health effects if leaching inhibitors (tolyltriazole, etc.) aren't present

Questions?

Thank You!

